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Introduction

In this paper we shall examine the properties of a certain class of projection
and Green’s operators which are associated with the tangent bundle of a Sobolev
space H*(X,Y) (defined below) of maps from a manifold X to a manifold Y.
In §2 we use these results to describe a class of functions on H%(X, Y) which
satisfy Condition C (in the sense of Palais and Smale). In §3 we derive an
expression for the riemannian sectional curvature of H*(X, Y). One might hope
that the property of having a sectional curvature of definite sign would be trans-
ferred from Y to H*(X,Y). However, this is not the case. We shall construct
examples of spaces Y whose riemannian curvatures are non-negative (zero, non-
positive) such that the riemannian curvatures of H*(S', Y) are indefinite. (§3
does not depend on the results of §2, and may be read immediately after § 1.)

1. A. Notation and basic definitions

Hereafter X and Y denote smooth finite dimensional riemannian manifolds,
X compact and without boundary. We shall suppose that Y is isometrically
and smoothly embedded in a euclidean space RY (which we may always do by
a well-known theorem of Nash).

We recall some basic facts in global analysis: (For general references see
{11,131, [4} or [S].) Let {,> denote the standard inner product on RY, dx: a smooth
measure on X, k a positive integer, and A a strictly positive strongly elliptic
self-adjoint operator (with smooth coefficients) of order 2k on C(X, R%), say

A =1+ 4% Let (u,v), = f(Au, v>dy, and let |||}, denote the correspond-
o

ing norm. Two such operators A give rise to equivalent norms, and #*(X, R?)
is defined to be the completion of C~(X, R“) with respect to |-||;. For & = 0,
set A = I. By a theorem of Rellich, for & </, the natural injection H'(X, RY)
— H*(X, RY) is dense and compact. A theorem of Sobolev asserts that the ||-|j;
topology is larger than the C* topology when k > 1di(X) + ¢. Hence when
2k > di(X) the elements of H*(X, R%) are continuous maps and one may define
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HYX,Y) = {fe H'(X, R(')|f(x) e Y for all xe X}. H*(X,Y) with the induced
topology is in fact a smooth infinite dimensional manifold modeled on a hilbert
space, and inherits a riemannian structure from H*(X, R?). For fe H¥(X, Y), let
T,HYX,Y) = {oe H(X, RY) |o(x) ¢ T, ,(Y) for all x e X}. Then T H*(X,Y)
may be identified with the tangent space of H*(X,Y) at f.

For ue C*(X, RY), define |u||_, = sup {(1, v),/||v}|s | v € H*(X, R}, and let
H~*(X, RY) denote the completion of C*(X, R?) with respect to ||-||_. It can
be shown that H-*(X, RY) is a hilbert space, which is dual to H*(X, R?), the
bilinear pairing being given by ( , ),; i.e., for every continuous linear functional
{on H*(X, RY) there exists a unique u ¢ H *(X, R% such that I(v) = (&, v),.
The proof of this and of certain other basic theorems involves the construction
of a Green’s operator G satisfying the relation (u, v), = (Gu, v), for all u,
ve HY(X,R%). One shows that G extends to an isometry H *(X, R?) —
H*(X, RY) and defines (u, v)_, = (Gu, v),. G and A are inverse isomorphisms
H (X, RY) « H*(X, RY). In paragraph 1C, we shall construct analogous
operators G, and A, on the spaces T ,H*(X,Y).

By means of the spectral representation of 4 (or G), spaces H*(X, R%) are
defined for each « ¢ R, and the collection -of spaces thus obtained are shown
to satisfy the theorems of Rellich and Sobolev.

Finally, we remark that this theory is usually discussed in a more general
setting: Collections of spaces {H*(£)} and {H*(¢§")} are constructed where &' is
a fibre sub-bundle of a riemannian vector bundle & over X. The case we are
considering is £ = X X R, § = X x Y, but the results of this paper can be
easily extended to the more general case.

1. B, The projection operators P}, P

Hereafter we write H* = H(X, RY), H* = H*(X, Y). To avoid the appea-
rance of inessential constants, we choose the operators A so that |||, < |||,
for k < [. k will denote a fixed positive integer with 2k > di(X).

For fe H*, T ,H" can be identified with a linear subspace of H*, and for
i = 0,k we let P. represent the projection H* — T ,H* which is orthogonal
with respect to (, );. Let N% = I — P%; then the following relations are easy
consequences of the definitions and properties of orthogonal projections:

1) INGull, = inf {ju — &||:|& e T,H"} .

(2) (PO = Py (Phu,v), = (u, PLw);; PYPE = P45 PAPY = P .
(3) NGl < INGully < [ Njulle < [INTully -

(4) PYANS = PAGNS =0,

where here, as always, 4 denotes the operator which defines the inner product
(, ) and G denotes the corresponding Green’s operator. Note that (2) defines
P% as the projection whose range is the range of P% and which is orthogonal
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with respect to (, ),. The relations (3) are a direct consequence of (1). Also,
from (1) it follows that (Pyu)(x) = P, u(x) where for ye Y, P, is the ortho-
normal projection RY — T,(Y).

To prove (4), we have (PYAN%u,v), = (AN%u, Pow), = (Ntu, Pow), =
(N%u, PiP%v), = 0. The other part of (4) is proved in the same way.

It is known that the map f — P is continuous in the norm topology of H*;
i.e., f —f, in H* inplies || P’ — P"h||,c — 0, [4, p. 112].

Proposition. Let j: M — H be a C**? isometric embedding of a manifold
M into a hilbert space H, and let P_: H — H denote the orthogonal projection
of H onto M, = T (M) (identified with a closed subspace of H). Then x — P,
isa C* map M — L(H, H).

To prove the proposition let ue H,ve M,. Then P,u = dj,u' for some
u'eM,, and (u', v),,=(dj,u', dj ) ;= (P,u, dj ) =, P.djw),=u,dj,v),
= (dj¥u, v),,. Hence u' = dj}u, and therefore

(5) P.u = dj,dj*u

More precisely, if we write ¢ for the composition M x Hi) T(M)——»M X H,
then P, = ¢(x, -), and the differentiability of P is a consequence of the differ-
entiability of ¢. (In writing out the details, one would use the fact that ¢ is
linear in the second variable, and that the maps x — || ¢(x, -) || x — ||dé(x, -)||
are continuous.)

1.C. The spaces T H*

Let |Jull.; = sup {(u, v),|ve T H* |\vll, = 1}, and let T,H * be the com-
pletion of, say, T ,H* with respect to ||-||_.

Theorem. Suppose the symbol of A is a multiple of the identity matrix.
Then T H™* is a hilbert space which is dual to T H*, the bilinear pairing be-
ing given by (, ),.

Proof. We shall first prove the theorem for the case when f is smooth,
the more general statement being obtained by a limit process. Let A, =
P%A4|image (P%). Then if f is smooth we may consider 4, to be an operator
on the smooth sections of the lifted bundle f*T(Y). A , is strongly elliptic
since, decomposing every ge C~(X, R") into a tangential and normal com-
ponent, we see that the symbol of 4 ; is the symbol of 4 “cut down” to the
dimension of Y. From the relation (/i.,-u, ), = (Au, v),; u,v e T, H*, it can
be seen that 4 ; is self-adjoint and strictly positive. Hence we can apply the
standard theory to obtain a Green’s operator G, satisfying the relation (u, v),

= (G,u, v), for all u, v e T H*, and the proof proceeds exactly as indicated in
Paragraph 4, T ,H* and T, H & now playing the roles of A* and H-*, respec-
tively. Before proceeding we note the following identity

(6) Pt = G,PoA
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whose proof consists in verifying that this expression for P satisfies the relation
(2) which define P% as the projection which is orthogonal with respect to ( , )y,
and whose range is the range of PY.

Now let f be any element of H*. (We cannot now use the standard theory
since f*T(Y) may only be of class C°.) To complete the proof we have to con-
struct a Green’s operator G,. Let {f,} be a sequence of smooth maps in H*
which converge to f in H*-norm. Multiplying (6) on the right by G, we obtain
PEG = G +P%, (f smooth). This motivates dgﬁning G ; = lim P%_G|image (P9).
A simple calculation shows that (i, v), = (G ;u, v), for all u, v e T H*, and the
proof proceeds as before. Also, it is easy to see that (6) now holds for any
fe HE,

1. D. The gradients F*E, °E

Let E be a C* function on H*. The gradient F*E(f) of E at f is defined by
the relation dE (v) = (F*E(f), v), for all v e T H*. Now the map v — dE (v)
is a continuous linear functional on 7 H¥, hence there exists an element of
T,H-* denoted by F°F and called the formal H° (or L?) gradient of E, which
satisfies the relation dE (v) = (P°E(f), v),. Hence

~

(7) VEE(f) = G °E(f) = PEGVE(f) 5
and for C' functions E, F,

(8) (VEEW), VEF(), = PPED, FF() 5
and therefore

(9) IPFED 1 = IPEDI 5 .

For later application it is important to note that although T ,H-* SH* (since
T,H* C H*), we can write F°E(f) e H*; i.e., we can extend the map v —
(F°E(f),v), to a continuous linear functional on H¢: for ve H*, define (FE(),v),
= (FP*E(f), v),.-

2. Condition C

A. Following Palais and Smale we say that a C' function F on H* satisfies
Condition C ift every sequence of points {f,} in H* for which {£(f,)} is bounded
and |[F*F(f,)|. is not bounded away from zero contains a convergent subse-
quence (converging to a critical point of F). We say that F satisfies Condition
H iff every component of H* contains a critical point of F. This is the same
as saying that every fe H* is homotopic to a critical point of F. Suppose F is
bounded below on each component of H*, say, F > 0, and that F satisfies
Condition C. Then Palais [3] has shown that every component of H* contains
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a point at which F assumes an absolute minimum. Hence, if F > 0, Condition
C implies Condition H.
F will be said to satisfy Condition [" iff f — F°F(f) is a weak-strong continu-

Y 2 k -k
ous map H* —» H™* in the sense that f, m f implies F°E(f,) —H—> PPE(f).

(Cf. the remarks at the end of Paragraph 1D.) For examples, see Paragraph
2D below.

~ Remark 1. Note that as a consequence of the theorems of Rellich and
Sobolev, H* is a weak closed subspace of H*. For weak convergence in H*
implies strong convergence in H*~= for any « > 0, and if o satisfies 2(k — )
> di(X), strong convergence in H*~= implies C° convergence.

Remark 2. Using (7) it is easy to show that F satisfies Condition /" iff the
map f — PEF(f) is a weak-strong continuous map from H* to H*. Suppose that
F is a positive C* function on H*, and consider the heat equation df(s)/dt =
—FP*F(f(¢)), with initial condition f(0) = f. It is known that this equation has
infinite positive escape time, so that ||F*F(f,)|, is not bounded away from
zero along the trajectory (Palais [3]). Therefore we get the following proposi-
tion: 1f F is a positive C* function on H* which satisfies Condition /", and if
the solution to the heat equation df/(t)dt =— —F*F(f,) with initial condition
f(0) = f is bounded in H* norm, then f is homotopic to a critical point of F.
(Ct. Eells [1]. The condition he imposes on F is that the map: f— F*F(f) be
compact.)

B. A strongly elliptic self-adjoint of order 2k on C (X, RY will be said to
be admissible, if 2k > di(X), and either A is strictly positive or Y is compact.
The following theorem was proved by Saber [4], [6].

Theorem. Let A be admissible, and for f € H* let F(f) = (Af, Dy Let F
= F|H*. Then F satisfies Condition C.

An easy proof of this theorem is provided by a result of K. Uhlenbeck {4.
p. 113], which asserts that a bounded sequence {f,} in H* contains a sub-
sequence {f,} for which {|N%, (f;,, — f})|l, — 0 as m, n — co. From (3), we see
that N° can be replaced by N¥ in this statement. Now if A is strictly positive,
we may write F(f) = §||f|. Hence F*F(f) = P%f. Suppose {f,} satisfies the
hypothesis of Condition C; i.e., ||f.|/; < constant and P% f,— 0. Then (f,,, f,
- fn)k = (fm’ P,}m(fm, _fn))lc + (fm > NI},,L(fm, —fn))k = (Pf:f,,,fm s fm —fn) + (fm: N]}m(fm,
— f)), and it is easy to see that {f,} contains a Cauchy subsequence. (The other
case will be treated below. Also, note that the symbol of A is not required to
be a multiple of the identity matrix.)

C. The following theorem is the principal result of this section.

Theorem. Let A be an admissible operator whose symbol is a multiple of
the identity matrix, and J be a C* function on H* which is bounded below and
satisfies Condition I'. Let F(fy = L(Af. ), + J(f). Then F satisfies Condition C.

Proof. First suppose that A is strictly positive, so that, as in B, we can
write F(f) = Li|fIE + J(f) and F*F(f) = P4f + F*J(f). Then, using (7), we
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can write V¥F(f) = Pi(f 4+ GP'J(f)). Suppose {f,} is a sequence in H* such
that |F(f,)| < constant and F*F(f,) — 0. Then, since J is bounded below,
IIf21ls < constant. Hence, by extracting a subsequence, we may suppose that
fn ——»weak il f for some f, and using Condition I, GV"J(fn) i» & for some &.
Therefore, since |P%_[i= 1, we have P% (GP'J(f,) — 5)—» 0. Hence F'*F(f,)
= Pt (f, + £ + o(1). Now write f¥ = f, + &, and let Y* be the translated
manifold Y + £. Since P%. = PY, it follows that P%. = P% for all . Therefore,
we have ||f¥|; < constant and P%,f¥ — 0, and we can apply Saber’s theorem
to obtain a convergent subsequence of {f¥

Now suppose that 4 is not necessarily strictly positive, but that ¥ is compact.
By a well-known theorem of Garding [5], there exists a 2 > 0 such that 4 4 aI
is strictly positive. Let 4,= A4 +2I, and write F(f) = 1(4,f, Dy + () — 1 D.
It is easy to show that the map f — ||f|; satisfies Condition ", so that J(f) —
LfIk is a C! function which is bounded below and satisfies Condition .

Remark. Cf. Eells [1, p. 786]. We note that the theorem he gives here
does not apply in our case since, among other things, the map f — N%f is not
compact.

D. Examples. 1. The following are examples of functions which satisfy
Condition .

(i) Ifl <k, then f -+ ||f|? satisfies Condition I .

(i1) If F satisfies Condition [, and g is a C' function on R, then goF satis-
fies Condition [".

(i) If V is a C! function on Y, then f — fVOfdp satisfies Condition /.

2. Let X = S, A = —d/de, and F(f)= J(Af, f), — fVofdz It is casy

to see that P'F(f) = — P(’f{dt") — VPV (f) = —D*f/dr — VV(f) Hence, inter-
preting I as the potential of a conservative dynamical system, we get the follow-
ing result: If Y is compact, then every homotopy class of maps from S' to Y
contains at least one solution to the dynamical equation D*f/d# = —F V. For
the case V' = 0, we get the well-known theorem of Fet: If Y is compact, then
every map S' — Y is homotopic to a geodesic.

3. The following example shows that the boundedness condition on J is
necessary. Let X = 8, Y = R, A = 1 — d&*/de®. Let F(f) = L(Af, ), — L(/fliE.
Then J(f) = — {2 is not bounded below. Let f,() = n + n™*cosnt (0 <
t < 2r). Writing everything down in terms of Fourier series (so that one
obtains a simple expression for G) it can be shown that |F(f,)| < constant,

P'F(f,) -IiA—» 0, and that ||f, — f.ll > |{m — n]. Hence F does not satisfy Con-
dition C.
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3. The curvature structure of H*

A. Let M — H be a smooth isometric embedding of a (possibily infinite
dimensional) riemannian manifold M into a hilbert space H, and for each x ¢ M,
let P, be the orthogonal projection H — T,(M). Hereafter we delete the ap-
pearance of the variable x in P and dP. Let #, &, 6, - - - denote vector fields on
M. Then, generalizing some well-known facts about finite dimensional mani-
folds, the Riemannian affine connection J/ and curvature form R are given by

(10) V.o = PO,
(11) R(5, 60 =7,V 10 — V. 0 .

From these last two relations one obtains
(12) R(n, £)6 = [dP(&)dP() — dP(p)dP(©)10 .

To derive this last result note that dP = d(PP) = (dP)P + P(dP). Hence (i)
(dP)P = NdP and (ii) (dP)N = PdP where N = [ — P. Similarly, from the
relation P@ = ¢ one obtains (iii) dP(§)§ = NO,(§) where 6, denotes the differ-
ential of 4. We identify 7 ,(M) with a subspace of H, so that ¢, is a map from
T(M) to T(H)|M. By abuse of notation, we let 4, also represent to composi-
tion of the two maps T(M) — T(H)|M and T(H)|M — H where this latter
map is the natural injection. Also, from (i) and (ii) we see that dP(§)dP(p)
= dP(&)dP(p)PO = dP(E)NdP(y) PO = PAP(E)NAP(5)P8 = PAP(£)dP(5)0 so that
the right hand side of (12) is actually a vector tangent to M. Now, from (10)
and (iii) a direct calculation shows that (iv) [F.,F, 10 = P(dP(£)dP(y) —
dP()dP(£))0 + P((0,on) (&) — (0,°8) () and that (v) I, .0 = PO.[&.y]. If
F is a function on H, we have 0,[&, ylF = [&, 5{(Fo0) = &(F o(0,07) —
PF08)) = Fyyo(0om), (§) — Fy o(0,:8),(y). This shows that F .0 =
P((040m) (&) — (0,°8)47), which with (iv) and (11) yields the desired result.

B. For later calculations we have to specialize these results to the finite
dimensional case. Let the embedding ¥ - R? (see Paragraph 14) be given
locally by vector-valued functions w = w(y', y*, - - - y*) where (', ¥, -+ -,»")
are local coordinates on Y. Let w, = 9w/3y’, and let w, ; denote the coefficientes
of the second covarient differential of w. For a tangent vector & we write & =
&i(a/ay") = &w, (summation convention), so that the second fundamental form
of Y is given by the symmetric bilinear vector-valued form B(§, ) = w, £/,
For each y e Y, let P} represent the orthogonal projection R? — T,(Y). Then
for » € RY, Pyv = (v, w>w, = (v, w,>w’ where indices are raised and lowered
in the usual tensorial fashion via the metric tensor on Y. A direct calculation
shows that

(13) dPY&)v = (v, w; DEW + (v, wiHw, &7,

where {,> is the standard inner product on R?. Note that it P, is the operator
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discussed in Paragraph 1B, then (Pi0)(x) = P%,v(x).
Let S denote the curvature form on Y. Then from (12) and (13) one obtains
the well-known result (one of the equations of Gauss and Codazzi, see [2]).

(14) S, &), & = By, ), B¢, &) — By, $), By, §) .

C. We now apply these results to the embedding H* -— H*. Our main
result is the following
Theorem. Let R denote the curvature form on H*. Then for 5, & e T HE,

(15) dP%(&)y = NEAPYW(E)y
(16)  (R(y, &), &) = (N:B(p, n), NSB(E, &) — [[INsB(, O -

Hereatter we delete the appearance of the variable f in P¥, P*, dP*, dP°. From

(2) we have dP® = d(P*P") = (dP*)P* + P*dP’. Hence (dP*)P° = N*(dP°.

Multiplying on the right by P° we get (dP¥)P® = N*(dP®)P®, which proves (15).
Using (12), we have

(R(9, &)y, §)i. = (dP¥(§)dP (9, §) — (AP*(ndP*(£)n, &),
+ (dP*(p)y, dPE(E)E), — (dP*(&)n, dPE(n)§);. .

But from (13) and (15) we get dP*(n)y = N*dP'(y)y = N*B(y, ). Similarly,
dP(&)y = N*B(£, ) = N*B(y, &) (since B is symmetric) = dP*(»£&, which
proves (16).

Before continuing we note the following relation (which will not be used in
the sequel):

a7 dP* = (N* + P*G)dP'(P* + AN¥) .

Proof. Applying d to the relation (4) PGN® = 0, we obtain (dP*)GN® =
P*GdP?. In the derivation of (15) we obtained (dP*)P® = N*dP°. Hence
(dP*)(P" 4+ GN%) = (N¥ + P¥G)dP°. But from (2) and (4) we have (P° + GN°)
(Pt + AN¥*) == ].

D. Examples. General Remarks: As mentioned in the Introduction, one
might hope that the functor Y — H(X,Y) preserves the property of having
Riemannian sectional curvature of definite sign. We shall show by specific ex-
amples (the loop spaces of spheres and cylinders) that this is not the case. For
computations we use (16), and we must therefore be able to compute || N5uls
for a general we H*. Now Niu = u — Ptu, and setting v = Pu = G, P Au
(from (6)), and multiplying on the left by P%A, we obtain

(18) Piu = v, where v is the unique element of H*
satisfying P{v = v and PiAv = PiAu .

The relations (18) can be obtained in another way: They are the Euler-
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Lagrange equations for variational problem || N%u||, = inf {|ju — &||,|§ e T H*}.

There is one special case in which these computations are especially easy;
viz., the case f = constant; for if f is constant, then, from the relation PSu =
(u, wyw; (see Paragraph B), we see that P{4 = AP%. Therefore, from the
remarks following (2), we get the following statement:

(19) If f is constant, then P% = P9 .

In the computations below we use the notation of Paragraph B. We let {e,
e,, e;} be the standard basis for R® and write (a, b, ¢) for ae, + be, + ce,.

Example 1. X =5",Y =5"=unitsphere x**+ y'+ 22=1, A =1 — d*/dr,
f = constant. Then B(y, &) = —<{&,p>w(f). Using (16), (19), and integrating
by parts, we get

R, 67,9, = [ (0078 &) — g, 87
+ [ andes - | ienpfla.
Let {(5) = (0,0, 1): 7 = e, 7 — constant; & — &e, + &e,. Then
RO, 99,0, = 7 [ et = |- o] ar.

Hence we see that (R(y, £)y, £), may be positive, negative, or zero.

Example 2. X = S, Y = cylinder x* + y* = 1,4 = 1 — d*/d*, f = con-
stant. We describe the cylinder by the parametric equations w(d, z) = (cos 4,
sin 6, z). Let w, = ow/a0 = (-sin 4, cos §,0) and w, = aw/3z = (0,0, 1). For
tangent vectors &,y write £ = §w, + &w,, » = nw, + pw, Note that P'v =
v, wHw, + {v,w,ow,. Now, in general, w;; = dw,/dy’ — I'};w, where [}
are the Christoffel symbols; in our case ['}; = 0. Hence

(1) B(, &) = Ep(@w]36°) = —&y, (cos §,sin 6,0) .

It turns out that, for f = constant,

(R(p, &, 6, = —f I9.(d&,/dt) — &\(dn,/dn[dt .

Hence the sectional curvature may be negative or zero. In the next example
we shall show that for f == constant the sectional curvature may be positive.
Hence we have an example of a manifold Y of zero curvature such that the
curvature of H'(S!, Y) is indefinite.

Example 3. X, Y and A as above; f(t) = (cos ¢, sin £, 0),0 <t < 2x. Let
u(®) = ¢(2) 3w /36> = —¢(t) (cos ¢,sin ¢, 0) be a general element of H satisfying



508 WILLIAM B. GORDON

Plu = 0. We want to cdmpute | Ntull,. Writing v = v,w, + v,w, equations (18)
reduce to

d*v, dé
— V= —L—,
(i) dar dt
Ji
V=0,
dr

Hence v, = 0, since v, == v,(2) is periodic in 7. The remaining equation in (ii)
can be solved explicity by the use of Fourier series. Writing ¢(t) = 3, &,e™
where here, as always, all sums run from —oo to + oo, it turns out that

(1/2x) || Pyulf = 8 3 (w*/(n* + 2)){$, [, and that (1/27) HNIuHI =2 Jn|¢n!
where J, = 2(n* + 4) J(m* + 2), —o0o < n< + oo, Itfollows that if '
another element of H satisfying PSu' = 0, then

(iii) (Ntu, Nbut), = 33 Topad

Referring to (i) of Example 2, we see that B(y, §) = —gh(cosd, sind, 0) where
g = {y, W, h = {& w>. Writing R for (1/27)(R(z, £)3, £),, we obtain

(iv) R = X 1.{(gD.(h"), — (8]},

where (g9),, (h*), and (gh), are the Fourier coefficients of the indicated
functions. Using the convolution law (gh), = 3] 8,_1h, = 3. g.fn ., WE get

]
This is the general expression for the sectional curvature. Let g(t) = 1/(2x).
Then going back to (iv) and using the relation (4%, = 3 |A,.[°, we get

(vi) R =1 5|t — D Julhal

If h(#) = e — e, wehave R =2J, —J_, —J, = 2(J, — J,) > 0. Hence
this sectional curvature is positive.

Z gn—k};n
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